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a b s t r a c t

The Semantic Web technologies are being increasingly used for exploiting relations between data. In
addition, new tendencies of real-time systems, such as social networks, sensors, cameras or weather
information, are continuously generating data. This implies that data and links between them are
becoming extremely vast. Such huge quantity of data needs to be analyzed, processed, as well as stored
if necessary. In this position paper, we will introduce recent work on Real-Time Business Intelligence
combined with semantic data stream management. We will present underlying approaches such as
continuous queries, data summarization and matching, and stream reasoning.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The main objective of Business Intelligence is to transform data
into knowledge for a better decision-making process. The constant
growth of data and information, coming from heterogeneous data
sources has led to new ways of interaction and the integration
of new models and tools to cope with this heterogeneity. We
manipulate more and more unstructured data documents, emails,
social networks, contacts that need to be integrated with classical
structured data like CRM, data stored in relational databases. We
also need more and more interactivity, flexibility, dynamicity and
expect the system to be proactive and reactive. Users expect
immediate feedback, and want to find information rather than
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merely look for it. Moreover, the company tends to be organized in
a collaborative way, called enterprise 2.0 [1]. All these evolutions
induce challenging research topics for Business Intelligence,
such as providing efficient mechanisms for a unified access
and model to both structured and unstructured data. Semantic
technologies are a perfect fit for integrating and matching data.
Business Intelligence integrates collaborative and social software,
by combining BI with elements from both Web 2.0 and the
Semantic Web. Extracting value from all these data, a crucial
advantage for companies, requires business analytics. In order to
synthesize information and derive insights frommassive, dynamic,
ambiguous data, the use of data visualization techniques and visual
analytics becomes critical. Business Intelligence is also impacted
by big data, and need to account for the volume of data sources as
well as the need of response in real-time for extracting value from
trusted data.

This position paper addresses the integration of real-time
analytics with semantic technologies. Many research work has
been done separately in these two fields, but, to the best of our
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knowledge, only a few ones provide an integrated view. This is
mainly due to scalability issues for semantic reasoning.

The rest of this paper is organized as follows. Section 2 describes
the new needs in Business Intelligence and presents a generic
architecture for semantic data stream management platform.
Section 3 focuses on related work in the area of semantic data
streaming. Section 4 describes data matching in an RDF stream
context. Section 5 gives an overview of reasoning in the context
of RDF stream processing. Finally, Section 6 concludes this paper
and gives an outlook upon future research formanaging large-scale
semantic streaming data.

2. From BI to semantic data streammanagement

Business Intelligence (BI) refers to a set of tools and methods
dedicated to collecting, representing and analyzing data to support
decision-making in enterprises. BI is defined as the ability of
an organization to take all input data and convert them into
knowledge, ultimately, providing the right information to the right
people at the right time via the right channel. During the last two
decades, numerous tools have been designed to make available
a huge amount of corporate data for non-expert users. Business
Intelligence is a mature technology, widely adapted, but faces new
challenges for incorporating new data such as unstructured data
or data coming from sensors or social networks into analytics. A
key issue is the ability to analyze in real-time these constantly
growing amounts of data, taking their meaning into account. The
complexity of BI tools and their interface is a barrier for their
adoption. Thus, personalized systems and user modeling [2] have
emerged to help provide more relevant information and services
to the user. Information visualization and dynamic interaction
techniques are key for enhancing the user experience in using such
tools [3].

Traditional BI systems offer tools for structuring and storing
data in a data ware-house, in which data are modeled with
a multidimensional model representing the analysis axis. Key
performance indicators can be computed from this model and
restituted to the user in a static dashboard.

These systems can be extended with semantic technologies to
capture the meaning of data and new ways of interacting with
data, intuitive and dynamic. Semantic technologies [4,5] focus
on the meaning of data and are capable of dealing with both
unstructured and structured data. Having the meaning of data and
a reasoning mechanism may assist a user during his analysis task.
The vision of the FP7 CUBIST1 projectwas to extend the ETL process
to both structured and unstructured data, to semantically store
data in a triple store and to provide user-friendly visual analytics
capabilities leading to dynamic dashboards. Then, the information
provided to the user is not composed of only quantitative values
like key performance indicators, but can also integrate qualitative
values represented by a graph or a lattice extracted from formal
concepts (a formal concept is a set of objects sharing properties;
the formal concepts are then organized in a lattice linked together
by a relation of inclusion). The user can then navigate into these
semantic data through a visual analytic tool [6].

More recently, business intelligence has been impacted by big
data and, in particular, need to take into account the velocity
i.e. the ability to provide information or alerts in real-time from
streams. With the exponential growth of sensor networks, web
logs, social networks and interconnected application components,
large collections of data are continuously generated with high
speed. These data are called ‘‘data streams’’: there is no limit

1 CUBIST EU FP7 project: http://www.cubist-project.eu/index.php?id=378.

on the total volume of data and there is no control over the
order in which data arrive. The analysis methods (data mining,
machine learning) should self-adapt to these data and process
them on the fly in one pass and in the order of their arrival.
These heterogeneous data streams [7] are produced in real time
and consequently, should be processed on the fly. Then, they are
maintained, interpreted and aggregated in the purpose of reusing
their semantics and recommending relevant alerts to the targeted
stakeholders in order to react to interesting phenomena occurring
in the input streams. A precious decision-making value can be
enhanced through the semantic analysis of data streams, especially
while crossing them with other information sources.

Coming back to semantic technologies, numerous techniques
can be used to extract some meaning or knowledge from data
sources. Among them, we can cite natural language processing
techniques, data mining, machine learning and ontology engineer-
ing. These techniques are used to extract patterns or models, to
structure data and to transform any information in actionable
knowledge. Semantic Web technologies can be used for linking,
publishing or searching for data on theweb, but also for large-scale
structuring and enriching data with the RDF semantic model.

Semantic-based approaches are useful to simplify the integra-
tion of heterogeneous data sources by the mean of ontologies and
for offering a unified metadata layer. Semantics can also be used
for discovering and enriching information, and finally, to provide
a unified data access mechanism. Semantics addresses the vari-
ety from the 3 V of Big Data (Volume, Variety and Velocity) to
generate value from heterogeneous data. The value of data also
increases when they can be linked to other data (Linked Data).
Semantic technologies can then be seen as a great opportunity to
reduce the cost and complexity of data integration.

Fig. 1 represents a generic architecture of what could be a
Real-Time BI platform in which structured and unstructured data
streams are processed on the fly. In a Real-Time BI platform,
multiple heterogeneous data sources can be connected, and data
can be static or dynamic. The static data comes from standard
databases or from open data, and does not change or in a minor
way. Dynamic data comes as a stream, in a semantic format
(RDF for example) or not (raw data). To process raw data, they
need first to be converted into semantic format using ontologies.
The idea is to maintain into the system an homogeneous format
and a meaningful model that can be processed by machines.
This architecture is composed of different components for
processing streams: semantic filtering and continuous queries,
data summarization, matching and reasoning. Semantic filtering is
used for processing a large volume of streams on the fly. Existing
systems are mainly based on RDF and SPARQL. To manage infinite
real-time data stream, the platform has to provide the ability
to create persistent continuous queries, which allow users to
receive new results when they become available. Moreover, in
the context of Big Data with a huge volume of data coming in
high velocity, the platform provides some summarizing and load
shedding techniques [8] that randomly drop data from the streams
when the load of the platform increases beyondwhat it can handle.
Data matching is used to enrich data with additional knowledge
and to combine data streams coming fromdistributeddata sources.
Discovering relations betweendata is a key factor to add contextual
information which may enhance decision making. This task is
particularly challenging in a stream context where time-efficient
techniques are needed to ensure scalability over high stream rates.
Finally, reasoning is a key component in an RDF stream context
and still considered as an open problem, mainly for reasoning
using parallelized computation and expressive ontology language.
These components are not fully integrated in existing architectures
for enabling semantic stream processing. We introduce in the
following sections a survey of research work related to semantic
data streammanagement, summarizing techniques, datamatching
and reasoning.

http://www.cubist-project.eu/index.php?id=378
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Fig. 1. A generic semantic real-time BI architecture.

3. Semantic data streaming

Massive data stream processing is a scientific challenge and an
industrial concern. But with the current volumes of data streams,
their number and variety, current techniques are not able to meet
the requirements of applications. The SemanticWeb tools, through
the RDF for example, address the problem of heterogeneous data.
Thus, the data stream are converted to semantic data stream by
using RDF triples extended with a timestamp. To be able to query,
filter, or reason on semantic data streams, the query language
SPARQLmust be extended to include concepts such as windowing,
based on previous work in Data Stream Management Systems
DSMS.

Data Stream Management Systems (DSMS) [9] are designed to
perform continuous queries over data stream. Data elements ar-
rive on-line and stay only for a limited time period in memory. In
a DSMS, continuous queries evaluate continuously and incremen-
tally arriving data elements. DSMS use windowing techniques to
handle some operations like aggregation as only an excerpt of a
stream (window) is of interest at any given time. A window may
be physically defined in terms of a time interval (for instance the
lastweek), or logically defined in terms of the number of tuples (for
example the last 20 elements).

Several DSMS prototypes have been developed. Some of them
are specialized in a particular domain (sensor monitoring, web
application, etc.), some others are for general use (such as
STREAM [10] and TelegraphCQ [11]).

The problem of ‘‘too much (streaming) data but not enough
(tools to gain and derive) knowledge’’ was tackled by [12]. They
envisioned a Semantic Sensor Web (SSW), in which sensor data
are annotated with semantic metadata to increase interoperability
and provide contextual information essential for situational
knowledge. CQELS [13], SPARKWAVE [14], C-SPARQL [15] etc. are
existing technologies to exploit these semantic and streaming
(continuous and infinite) data, and are based on recommended
standard RDF, as the format of representation. Their design and
specification are based on DSMS’s features.

CQELS [13] is a native approach in an RDF environment based
on ‘white-boxes’. It provides its own processingmodel and its own
operators to deal with streams, for example, window operators or

query semantic operators. C-SPARQL [15] on the other hand, uses
a ‘black-box’ approach which delegates the processing to other
engines such as stream/event processing engines and SPARQL
query processors by translating to their provided languages.

Although almost all the engines are based on the SPARQL
Language, there are only a few systems which are able to process
big quantity of data on the fly. Moreover, these engines do not
feature any tool that would allow them to reduce the processing
efforts and improve the processing time. Formany applications,we
must obtain compact summaries of the stream. These summaries
could allow accurate answering of queries with estimates, which
approximate the true answers over the original stream [16].

3.1. Data summarization

In many fields, we are faced with the ever growing problem
of how to manage and analyze large dynamic datasets. Database
and data mining researchers often use synopsis (i.e. summaries)
with great effect to scale up performance on these datasets with a
small cost to accuracy. Perhaps the most basic synopsis of a data
stream is a sample of elements from the stream. A key benefit
of such a sample is its flexibility: other synopses can be built
from a sample itself. The rest of this section summarizes the state
of the art for data stream algorithms. We will focus primarily
on the problems of creating sample structures for a single data
stream, in addition, we will also present techniques used in a
distributed environment. Most of these summary structures have
been considered for traditional databases [17]. The challenge is to
adapt some of these techniques to the data stream model.
Data stream sampling Sampling data streams is based on
traditional sampling techniques, but also requires significant new
innovations, especially to deal with the problem of infinite length
streams. Windowing techniques are used to handle the unlimited
nature of data: only an excerpt of a stream (window) is of interest
at any given time. A windowmay be physical, defined in terms of a
time interval (e.g., the last week), or logical, defined in terms of the
number of tuples (e.g., the last 20 elements). Thesewindows can be
fixed with ‘‘fixed endpoints’’, or sliding with ‘‘moving endpoints’’
over time or tuples.
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The traditional online algorithm ‘‘Reservoir Sampling’’ was
proposed by Vitter in 1985 [18] and is widely used to sample data
streams. It produces a sample of fixed size and does not require
prior knowledge of data stream length. Reservoir sampling is useful
for insertions or updates but not for deletions in the case of a sliding
window. The difficulty arises because elements must be removed
from the sample as they expire, so that maintaining a sample of a
specified size is nontrivial. Several algorithms for handling logical
and temporal windows have been developed.

A simple approach was proposed in [19]. The algorithm
maintains a reservoir sample for the first window of the data
stream. When an element expires, it is replaced with the newly
arrived element. This algorithm maintains a uniform random
sample for the first window and requires little memory to store
the sample, but has the disadvantage of being highly periodic. To
handle this, another technique was proposed in [19]. Each new
arrival is added to a ‘‘Backing sample’’ with a fixed probability and
the sample is generated by down sampling the backing sample. As
elements expire, they are removed from the backing sample.

Many other algorithms were developed to be applied to logical
windows such as ‘‘chain sampling’’ [19], to temporalwindows such
as ‘‘priority sampling’’ or for particular use such as ‘‘concise sam-
pling’’ [20]. To the best for our knowledge, all of these techniques
sample the data stream individually. Moreover, these techniques
exploit neither possibilities of computation in sensors, nor bidirec-
tional communication between the sensors and the central server.
Distributed data stream sampling There are many applications
where data is continuously produced by a large number of dis-
tributed sensors. Adaptive sampling has been developed for these
applications to manage limited resources. They aim at conserving
network bandwidth and storage memory by filtering out data that
may not be relevant in the current context. The data collection rate
becomes dynamic and adaptable to the environment.

Most existing adaptive sampling techniques sample data from
each source (temporal sampling). An adaptive sampling scheme
which adjusts data collection rates in response to the contents
of the stream was proposed in [21]. A Kalman filter is used at
each sensor to make predictions of future values based on those
already seen. The sampling interval SI is adjusted based on the
prediction error. If the needed sampling interval for a sensor
exceeds that is allowed by a specified Sampling Interval range,
a new SI is requested to the server. The central server delivers
new SIs according to available bandwidth, network congestion and
streaming source priority.

In [22], authors present a feedback control mechanism which
makes the frequency of measurements in each sensor dynamic
and adaptable. Sampled data are compared against a model
representing the environment. An error value is calculated on the
basis of the comparison. If the error value ismore than a predefined
threshold, then a sensor node collects data at a higher sampling
rate; otherwise, the sampling rate is decreased. Sensor nodes are
completely autonomous in adapting their sampling rate.

In [23], authors present a method to prevent sensor nodes
to send redundant information; this is predicted by a sink node
using an ARIMA prediction model. Energy efficiency is achieved
by suppressing the transmission of some samples, whose ARIMA
based prediction values are within a predefined tolerance value
with respect to their actual values. A similar approach is proposed
by Cormode and Garofalakis [24]. Their results show that reduced
communication between sensors and the central server can be
sufficient by using an appropriate prediction model. A wide
range of queries (including heavy hitters, wavelets and multi-
dimensional histograms) can be answered by the central server
using approximate sketches.

On the other hand, [25] uses a spatial sampling technique called
backcasting approach. Backcasting operates by first activating

Fig. 2. Adding a sampling operator to semantic data stream management engine.

only a small subset of sensor nodes which communicate their
information to a fusion center. This provides an estimate of the
environment being sensed, indicating some sensors may not need
to be activated to achieve a desired level of accuracy. The fusion
center then backcasts information based on the estimate to the
network and selectively activates additional sensors to obtain a
target error level. In this approach, adaptive sampling can save
energy by only activating a fraction of the available sensors.

3.2. Summarizing semantic data streams

The growing generated data from web applications is becom-
ing a problem for the processing systems, and the relation between
data is causing troubles when attempting to exploit data reposito-
ries. Therefore, [26] proposed an extension of a real-time request
system that allows to reduce processing tasks and memory space
requirements. Authors propose the implementation of sampling
operators that could be used in conjunctionwith existing semantic
data streams engines considered as a Black Box engine. The sam-
pling methods that have been implemented are: Uniform Random
Sampling, Reservoir Sampling and Chain Sampling. Authors pro-
pose to extend existing semantic data stream querying engines by
creating an external abstraction of the sampling operator as shown
in Fig. 2.

However, this approach as implemented in [26] is only inter-
esting when applied to semantic data streams including only in-
dependent RDF triples. The use of such approach is less successful
when it comes to treat the data stream of a higher semantic level
where RDF triples are linked to form RDF graphs. Indeed, this ap-
proach will lead to the destruction of semantic links constituting
the structure of these graphs, thus reducing the level of semantics
and affecting the data consistency.

Recently, two particular works take advantage of the fact that
semantic data streams are constituted of a small set of RDF
schema and have a very regular RDF graph structure according
to a graph-based data model. In the first work, authors propose
RDSZ [27] (RDF Differential Stream compressor based on Zlib [28]),
an algorithm for lossless RDF stream compression. The approach
combines a differential encoding mechanism with the general
purpose stream compressor Zlib.

The second approach proposes an efficient interchange format
for RDF streams ERI (Efficient RDF Interchange Format) [29]. This
work is adapted from the encodingmechanismof the Efficient XML
Interchange (EXI) format [30] (Efficient XML Interchange format).
Its principle comes from the fact that the described entities in
an RDF stream often follow a common schema. ERI multiplexes
the information into structural (schema) and value (concrete data)
channels. Then Zlib compressor is used in each channel, resulting
in high compression ratios and effective processing time.

4. Data matching in an RDF stream context

RDF Streams are increasingly becoming available from various,
distributed and autonomous sources. They cover different domains
such as environment, energy and transportation. Combining
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and enriching these multiple streams is the vision of Semantic
Sensor Web which aims to increase interoperability and to
derive additional knowledge for reasoning enhancement. Indeed,
semantic enrichment of sensor data is advantageous to provide
contextual information which can increase reasoning capabilities
to solve problems such as network management and event
detection. Context has been particularly proven to be essential
for accurate and robust anomaly detection in sensor data [31].
For example, what appears to be anomalous during a day or a
year in an electrical sensor network may be found to be false
positives when introducing context such as time of day (e.g. night)
or specific events (e.g. holidays). Providing such context requires
a system which is able to enrich streaming data by discovering
semantic relations between RDF resources. This is known as data
matching or link discovery task which has recently gained a
crucial importance in SemanticWeb. Themain challenge is how to
combine data residing at different sources, and resolve references
at the instance level such as identity link usingowl:sameAs or any
other semantic relatedness between two real-world objects. This is
a key factor to directly enhance two important dimensions of data
quality, which are accuracy and completeness [32]. Accuracy is the
extent to which data are correct, reliable and free of error. Using
multiple representations from different sources has the advantage
to detect conflicts and inaccurate data. Completeness is the extent
towhichdata are of sufficient breadth, depth, and scope for the task
at hand. Multiple object representations usually cover different
properties, thus leading to more complete description.

Recently, several research studies have led to a plethora of
matching tools based on manual configuration to define similarity
function or on fully automated process. Most of these tools
typically use offline matching given that the corpus of data is
complete. However, there is very little research related to online
and real-time matching that needs to link data as they appear
and not as a batch. A variety of DSMS have been developed to
manipulate, store and query multiple streams of data. However,
none of them has tackled the problem of data matching in
dynamic environment. In order to add context, a DSMS should
be able to deal with high stream rates and perform semantic
matching with high scalability. Such matching could be based on
some time-efficient approaches proposed to deal with scalability
for large datasets. This is ensured by pruning the search space
using a candidate selection scheme in which the aim is to
minimize the number of unnecessary similarity computations.
One popular method, used in various tools [33,34], is filtering by
utilizing inverted index structures. It reduces the search space
by quickly excluding all pairs that do not share a common
token. This optimization typically focuses on string similarity
distances and on a specific discriminative property. Another
advanced method proposes to form blocks of entities sharing an
identical or approximate key. Many blocking-based techniques
exist such as standard blocking (using a predefined blocking key),
sorted neighborhood, and adaptive blocking [35]. Silk [36] and
LIMES [37] are popular link discovery tools which make use
of blocking techniques. Silk introduced a novel method called
MultiBlock using a multidimensional index which subdivides
the space into overlapping blocks. While standard blocking
techniques block in one dimension, MultiBlock blocks by multiple
properties using multiple dimensions. More precisely, it builds
an index for each similarity measure in the matching function to
preserve the distances of the entities. Then, it uses a compound
multidimensional index to aggregate all indexes, and generate
a comparison pair for each two entities which share an index.
MultiBlock guarantees that similar entities share at least one
block, thus reducing the runtime without sacrificing recall. It
has the advantage to work on streaming data as it does not
require to pre-process the whole dataset. LIMES proposed another

lossless time-efficient algorithm called HYPPO (HYpersphere
aPPrOximation algorithm) and dedicated for numeric values in
metrics spaces. It utilizes the triangle inequality to compute
pessimistic approximations of distances which are then used to
filter out a large amount of obvious non-matches before executing
comparisons. The triangle inequality has been also exploited in
different tasks to improve the runtime, for example to optimize the
performance of continuous queries on high dimensional streaming
time series [38]. Overall, the reduction of the search space has
been shown to enhance scalability by several orders of magnitude.
Still, the sheer amount of links to be discovered can induce an
impractical runtime. Thus, parallel processing have been recently
investigated by some toolswhich involve advanced infrastructures
such as MapReduce-based clusters or graphics processing units
(GPU). For example, Silk, Zhishi.links [39] and LIMES-MR [40]
support already the distributed computing with MapReduce thus
optimizing the scalability. The performance of these frameworks
is, however, limited by the input–output overhead. Thus, the use
of parallel processing onmassively parallel graphic processors was
another solution that has been explored in [40].

While most of these methods are tailored to offline processing,
many applications such as query answering systems or real-time
credit monitoring still require an efficient and online approach
to link data at runtime. In such a context, besides to scalability
concern, the system should be able to take into account the
dynamic nature of data and allow the matching model to evolve
over the time. Currently, there is very little research related to
link discovery that could be applied on highly dynamic streaming
data. The work in [41] proposed to fetch the candidate solutions
for each incoming resource using SPARQL filtering based on a
supervised blocking technique. However, the supervised model in
such environment would quickly become inaccurate as there is
no guarantee that training data would still be representative of
the space. Thus, an incremental approach is required to handle
the data variations without processing the entire corpus of data.
For example, the method described in [42] supports an online
matching based on doubling hierarchical clustering with two
stages: update stage that assigns entities to clusters, merge stage
that combines clusters to prevent them from exceeding a fixed
limit. Each new entity is then compared against other resources
in the selected candidate clusters. This approach seems promising,
but the author did not present any evaluation. Overall, there is a
need for amore comprehensive support of real-timedatamatching
in DSMS such as parallel processing, time-efficient algorithms, and
incrementalmodels to dealwith scalability aswell as the dynamics
of data over the time.

5. Reasoning in an RDF stream context

This section emphasizes the importance of reasoning in the
context of RDF stream processing. To fully grasp the potential of
this feature, we first need to clarify the notion of reasoning in the
context of the Semantic Web and Knowledge Bases in general. A
Knowledge Base consists of a set of facts and some rules which are
specifying the vocabulary used by the facts. For instance, consider
the facts stating that Camille teaches course1 and Camille
is pregnant together with an ontology defining that only
a professor teaches a course and only a female
can be pregnant. Then a reasoner, i.e., a software dedicated
to derive information and knowledge, can infer that Camille is
a female professor.

In the Semantic Web, the graph-based RDF data format is used
for the definition of both the facts and the vocabularies, also
known as ontologies, corresponding to RDF Schema and OWLW3C
languages. The ontologies are precisely the components that are
supporting the derivation of implicit information and knowledge
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from explicit ones. This ability to derive inferences is an important
differentiator between Knowledge Base systems and traditional
Relational Database Management systems or NoSQL stores, graph-
based ones included [43]. As a consequence, the reasoning feature
is not one of the requirements presented in [44] for standard
database stream processing. In this section, we argue that the full
potential of RDF stream processing lies in this reasoning capacity,
we point to some potential solutions for the design of such systems
and we present first results toward this direction.

Reasoning in the Semantic Web has a long history that takes
its roots in Artificial Intelligence and logic. Inferences drawn
from ontologies support operations such as concept classification,
qualification of the consistency of a knowledge base, retrieval
of the instances of a given concept, finding the most specific
concept an individual is an instance of and instance checking
to name the main ones (read [45] for a detailed presentation of
these reasoning services). They are generally implemented using
automata theory, a translation to predicate logic, resolution-based
methods or the semantic tableau approach. The latter two have
been themostwidely adopted among existing systems, e.g., Fact++,
Pellet, HermiT, RacerPro for expressive ontologies, i.e., OWL2DL,
and ELK, CEL, Quonto, Jena for lightweight ontologies, i.e., OWL2
profiles, namely EL, RL, QL, and RDFS.

These systems cannot be used out of the box in a stream context
due to the near real-time nature that forces to obtain reasoning
results within a given time period. In this situation, a particular
attention is given to the ontology expressiveness/computational
complexity trade-off which should ensure that the relevant
inferences can be performed in a defined time-window constraint.
This is themain reason for the adoption of RDFS reasoning, the least
expressive ontology language of the W3C Semantic Web stack, in
available systems. Nevertheless, some systems have considered
an extension of RDFS, e.g., by introducing property transitivity,
in RDF stream processing. Other ontology languages of the W3C
stack, namely OWL2DL and its profiles, may be considered too
computationally expensive in a streaming context and to the best
of our knowledge have not implemented in existing systems.

Different types of RDF stream reasoning have been identified:
data-driven, query-driven and hybrid solutions.

In the former, the information contained in RDF streams is
extended at load-time, possibly using some external ontologies,
by generating possible inferences. The main limitations of this
approach, frequently denoted as materialization, is the latency
implied at data loading time due to the computation of all
deductions and the difficulty to maintain a valid dataset in the
face of data updates, e.g., removing a single information can induce
the deletion of an important number facts some of which can
be derived by some other valid data. The main advantage of
materialization is the performance of query processing due to the
absence of any overhead. The Virtuoso RDF database management
system is adopting this reasoning approach in a non-streaming
context. We believe that this data-driven approach has some
potential in a streaming context if the system is able to limit the
number of materialization to a minimal and relevant set of triples.
Hence ensuring that the materialization process can be executed
within the defined time-window. In the case where an external,
static knowledge base is used in thematerialization process, a nice
property would be to constrain the number of possible updates.
The first requisite implies an analysis of both the continuous
queries and the ontologies involved in stream processing. Since
the continuous queries can be considered relatively static, i.e., once
defined, they are being used for a certain time, this approach
is realistic. The latter requisite may depend on the use case
associated to the streaming application, i.e., update frequency of
external knowledge bases. We both know of knowledge bases
that are being updated several times per day, for instance in the

bioinformatics domain, and of other domains where modifications
are only occurring on a weekly or monthly basis.

This approach can be opposed to query-driven which rewrites,
a.k.a., reformulates, the (continuous) queries in order to retrieve
all valid answers. With this solution, the advantages consist of
fast loading times and easier handling of data updates. The main
drawback corresponds to slow query answering due to the over-
head of reasoning over the data, knowledge pair which is required
for all queries. Moreover, the rewriting can possibly generate a
large number of queries, some of which can be semantically equiv-
alent and syntactically different, resulting in a high rate of du-
plicate answers. GraphDB (formerly OWLIM) is an RDF store us-
ing this query-driven solution in a non-streaming context. If the
continuous queries executed in a streaming context are relatively
static, it may be worth considering this query-driven approach. In
that situation, a set of queries would be reformulated prior to the
stream processing and without any hard time constraint. A second
step would analyze these rewritten queries to prevent query re-
dundancy and unsatisfiable queries. This second step is clearly is
more involved since ideally, these properties would be ensured at
compile-time and not at run-time.

The latter solution is a combination of the previous two
approaches, i.e., a method where only a portion of the data would
be materialized and a part of the query would be reformulated.
Blazegraph (formerly bigdata) is an example of a hybrid system
in a non-streaming context. This approach may have a big impact
on reasoning stream processing. It would require the definition of
a cost-based approach for the definition of a boundary between
materialization and rewriting. Such a solution would involve a
detailed analysis of the query steaming workload and of the
knowledge bases. Due to the complexity of the problem, a efficient
approach would be based on the definition of heuristics.

In a non-streaming reasoning process, the order in which
the information and knowledge is processed is not important.
This is not the case in a streaming context where the order of
stream tuples may imply a certain interpretation and implying the
derivation of different facts and knowledge. We can distinguish
between several order notions. Natural order is the most frequent
one and generally corresponds to the order in which stream tuples
arrive in the system. In the case of RDF data, a timestamp value can
be added to the subject, predicate, object RDF triple, thus forming a
quad. Some other forms of order, requiring a more or less involved
computation, are also possible, e.g., popularity, frequency. To be
the best of our knowledge, none of the current standard Semantic
Web reasoners are adapted to handling ordered triples.

In [46], the authors present a taxonomy of implemented
systems and open research problems in RDF stream reasoning.
They argue that most implemented systems belong to the
data-driven category with a natural order. IMaRS [47] and EP-
SPARQL [48] are such systems which respectively belong to the
DSMS and CEP categories. It is recognized that the query-driven
approach is promising due to the static nature of queries in a
streaming context. That is, the reformulation of the query would
be performed once and its optimized version could potentially be
executed an infinite number of times. The hybrid, mixing data and
query driven approaches, presents the most important research
challenges but also the highest potential in terms of task adequacy
and efficiency.

A third dimension for RDF stream reasoning corresponds to
the parallel computation of the inference services. In a non-
streaming context, systems such as WebPie [49] and SAOR [50]
have been implemented using the MapReduce [51]. The batch
processing nature of MapReduce is not adapted to handle streams
and hence, these systems cannot be used in a streaming context.
Parallel systems dedicated to stream processing, e.g., Storm, Spark
Streaming, Apache Flink, Samza or S4, have rarely been used by
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any RDF streaming processing system equipped with inference
services. [52] is in fact, the only tentative that we know of in
this direction. The system performs RDF streaming distributed
on the S4 system. The paper describing the system describes an
experimentationwhere RDFS reasoning is being performed. It does
not seem that the software is being maintained or extended for
more expressive ontologies.

Thus, RDF stream reasoning can be considered as an open
problem in need for parallelized computation, expressive ontology
language support and handling possibly complex order. The main
challenge associated to this problem is to combine knowledge base
andquery analysis togetherwith reasoning in parallel computation
setting. This implies to define novel systems leveraging from
Semantic Web and distributed streaming approaches.

6. Conclusion

The interconnection of massive data streams is a scientific chal-
lenge and a concrete industrial concern. But with the current vol-
umes of data streams, their velocity and variety, current techniques
are not able to meet the requirements of real applications. Yet
we believe that this problem can be answered by taking advan-
tage of recent advances in the techniques of querying, summa-
rizing, matching and reasoning on semantic data streams. These
techniques are part of the new generation of Real Time Business
Intelligence.

The Semantic Web tools, through RDF for example, address the
problem of heterogeneous data. Thus, data streams are converted
to semantic data streams by using RDF triples extended with a
timestamp. To be able to query, filter, or reason on semantic data
streams, the SPARQL query language must be extended to include
concepts such as continuous queries. Several research prototypes
for semantic filtering have been presented recently. However, to
the best of our knowledge, none of theseworks has been concerned
about overloading when the semantic data stream management
system is not able to handle an overwhelming incoming data. Load
shedding techniques and summarization techniques exist in the
field of DSMS as we had presented in this paper. The challenge
is to adapt these techniques to semantic data streams by losing
the least possible links between data. In addition, data streams are
large, heterogeneous in nature and incrementally processed. Such
complexities require a powerful online technique to handle link
discovery and thus data enrichment in real time. However, most of
research studies have mainly addressed the time-efficient linking
to scale to very large datasets. Still, none of them has explored the
incremental techniques to handle the dynamics of data over the
time.

References

[1] Juan Trujillo, Alejandro Maté, Business intelligence 2.0: A general overview,
in: Marie-Aude Aufaure, Esteban Zimányi (Eds.), Business Intelligence,
in: Lecture Notes in Business Information Processing, vol. 96, Springer, Berlin,
Heidelberg, 2012, pp. 98–116.

[2] Alfred Kobsa, Generic user modeling systems, in: Peter Brusilovsky, Al-
fred Kobsa, Wolfgang Nejdl (Eds.), The Adaptive Web, in: Lecture Notes in
Computer Science, vol. 4321, Springer, 2007.

[3] Micheline Elias, Marie-Aude Aufaure, Anastasia Bezerianos, Storytelling in
visual analytics tools for business intelligence, in: INTERACT 2013—14th
IFIP TC13 Conference on Human–Computer Interaction, in: Lecture Notes
in Computer Science, vol. 8119, Springer, Cape Town, South Africa, 2013,
pp. 280–297.

[4] Tim Berners-Lee, James Hendler, Ora Lassila, The semantic web, Sci. Am. 284
(5) (2001) 34–43.

[5] Pascal Hitzler, Markus Krtzsch, Sebastian Rudolph, Foundations of Semantic
Web Technologies, first ed., Chapman & Hall/CRC, 2009.

[6] Cássio A. Melo, Alexander Mikheev, Bénédicte Le Grand, Marie-Aude
Aufaure, Cubix: A visual analytics tool for conceptual and semantic data,
in: Jilles Vreeken, Charles Ling, Mohammed Javeed Zaki, Arno Siebes, Jeffrey
Xu Yu, Bart Goethals, Geoffrey I. Webb, Xindong Wu (Eds.), ICDMWorkshops,
IEEE Computer Society, 2012, pp. 894–897.

[7] Charu Aggarwal (Ed.), Data Streams—Models and Algorithms, Springer, 2007.
[8] Nesime Tatbul, Uğur Çetintemel, Stan Zdonik, Mitch Cherniack, Michael

Stonebraker, Load shedding in a data stream manager, in: Proceedings of the
29th International Conference on Very Large Data Bases—Volume 29, VLDB’03,
VLDB Endowment, 2003, pp. 309–320.

[9] LukaszGolab,M. TamerÖzsu, Issues in data streammanagement, SIGMODRec.
32 (2) (2003) 5–14.

[10] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito, Rajeev
Motwani, Itaru Nishizawa, Utkarsh Srivastava, Dilys Thomas, Rohit Varma,
Jennifer Widom, Stream: The stanford stream data manager, IEEE Data Eng.
Bull. 26 (1) (2003) 19–26.

[11] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R. Madden,
Fred Reiss, Mehul A. Shah, Telegraphcq: Continuous dataflow processing,
in: Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, SIGMOD’03, ACM, New York, NY, USA, 2003, p. 668.

[12] Amit Sheth, Cory Henson, Satya S. Sahoo, Semantic sensor web, IEEE Internet
Comput. 12 (4) (2008) 78–83.

[13] Danh Le-Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, Manfred Hauswirth,
A native and adaptive approach for unified processing of linked streams
and linked data, in: Proceedings of the 10th International Conference on the
Semantic Web—Volume Part I, PISWC’11, Springer-Verlag, Berlin, Heidelberg,
2011, pp. 370–388.

[14] Srdjan Komazec, Davide Cerri, Dieter Fensel, Sparkwave: continuous schema-
enhanced pattern matching over RDF data streams, in: Proceedings of the 6th
ACM International Conference on Distributed Event-Based Systems, DEBS’12,
ACM, New York, NY, USA, 2012, pp. 58–68.

[15] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della
Valle, Michael Grossniklaus, C-sparql: Sparql for continuous querying,
in: Proceedings of the 18th International Conference on World Wide Web,
ACM, 2009, pp. 1061–1062.

[16] Edith Cohen, Graham Cormode, Nick Duffield, Structure-aware sampling on
data streams, in: Proceedings of the ACM SIGMETRICS Joint International
Conference on Measurement and Modeling of Computer Systems, ACM, 2011,
pp. 197–208.

[17] Paul G. Brown, Peter J. Haas, Techniques for warehousing of sample data,
in: Ling Liu, Andreas Reuter, Kyu-Young Whang, Jianjun Zhang (Eds.), ICDE,
IEEE Computer Society, 2006, p. 6.

[18] Jeffrey S. Vitter, Random samplingwith a reservoir, ACMTrans.Math. Software
11 (1) (1985) 37–57.

[19] Brian Babcock, Mayur Datar, Rajeev Motwani, Sampling from a moving win-
dowover streaming data, in: Proceedings of the Thirteenth Annual ACM–SIAM
Symposium on Discrete Algorithms, SODA’02, Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA, USA, 2002, pp. 633–634.

[20] Phillip B. Gibbons, Yossi Matias, New sampling-based summary statistics for
improving approximate query answers, in: Proceedings of the 1998 ACM
SIGMOD International Conference on Management of Data, SIGMOD’98, ACM,
New York, NY, USA, 1998, pp. 331–342.

[21] Ankur Jain, Edward Y. Chang, Adaptive sampling for sensor networks,
in: Proceeedings of the 1st International Workshop on Data Management for
Sensor Networks: In Conjunction with VLDB 2004, DMSN’04, ACM, New York,
NY, USA, 2004, pp. 10–16.

[22] A.D. Marbini, L.E. Sacks, Adaptive sampling mechanisms in sensor networks.
2003.

[23] Chong Liu, Kui Wu, Min Tsao, Energy efficient information collection with the
arima model in wireless sensor networks, in: GLOBECOM, IEEE, 2005, p. 5.

[24] Graham Cormode, Minos N. Garofalakis, Approximate continuous querying
over distributed streams, ACM Trans. Database Syst. 33 (2) (2008).

[25] RebeccaWillett, Aline Martin, Robert Nowak, Backcasting: Adaptive sampling
for sensor networks, in: Proceedings of the 3rd International Symposium on
Information Processing in Sensor Networks, IPSN’04, ACM, NewYork, NY, USA,
2004, pp. 124–133.

[26] Naman Jain, Manuel Pozo, Raja Chiky, Zakia Kazi-Aoul, Sampling semantic
data stream: Resolving overload and limited storage issues, in: DaEng, 2013,
pp. 41–48.

[27] Norberto Fernández, Jesús Arias, Luis Sánchez, Damaris Fuentes-Lorenzo,
Óscar Corcho, RDSZ: An approach for lossless RDF stream compression, in: The
Semantic Web: Trends and Challenges, Springer, 2014, pp. 52–67.

[28] Peter Deutsch, Jean-Loup Gailly, Zlib compressed data format specification
version 3.3. Technical report, 1996.

[29] Javier D. Fernández, Alejandro Llaves, Oscar Corcho, Efficient RDF interchange
(eri) format for RDF data streams, in: The SemanticWeb–ISWC 2014, Springer,
2014, pp. 244–259.

[30] John Schneider, Takuki Kamiya, D. Peintner, R. Kyusakov, Efficient xml
interchange (exi) format 1.0. W3C Proposed Recommendation, 20, 2011.

[31] Michael Hayes, Miriam A.M. Capretz, Contextual anomaly detection frame-
work for big sensor data, J. Big Data 2 (1) (2015).

[32] Felix Naumann, Melanie Herschel, An Introduction to Duplicate Detection,
Morgan and Claypool Publishers, 2010.

[33] Khai Nguyen, Ryutaro Ichise, Bac Le, SLINT: a schema-independent linked data
interlinking system, in: 7th International Workshop on Ontology Matching,
Boston, USA, 2012.

[34] Juanzi Li, Zhichun Wang, Xiao Zhang, Jie Tang, Large scale instance matching
via multiple indexes and candidate selection, J. Knowl.-Based Syst. 50 (2013)
112–120.

[35] Rohan Baxter, Peter Christen, Tim Churches, A comparison of fast blocking
methods for record linkage, in: ACM SIGKDD Workshop on Data Cleaning,
Record Linkage, and Object Consolidation, 2003.

http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref1
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref2
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref3
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref4
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref5
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref6
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref7
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref8
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref9
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref10
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref11
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref12
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref13
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref14
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref15
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref16
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref17
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref18
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref19
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref20
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref21
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref23
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref24
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref25
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref27
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref29
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref31
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref32
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref34


8 M.-A. Aufaure et al. / Future Generation Computer Systems ( ) –

[36] Robert Isele, Anja Jentzsch, Christian Bizer, Efficient multidimensional
blocking for link discovery without losing recall, in: 14th International
Workshop on the Web and Databases, Athens, Greece, 2011.

[37] Axel-Cyrille NgongaNgomo, Lars Kolb, NormanHeino,Michael Hartung, Sören
Auer, Erhard Rahm, When to reach for the cloud: Using parallel hardware
for link discovery, in: 10th Extended Semantic Web Conference, ESWC,
Montpellier, France, 2013.

[38] Zhengrong Yao, Like Gao, Xiaoyang Sean Wang, Using triangle inequality to
efficiently process continuous queries on high-dimensional streaming time
series, in: 15th International Conference on Scientific and Statistical Database
Management, Cambridge, MA, USA, 2003.

[39] Xing Niu, Shu Rong, Yunlong Zhang, HaofenWang, Zhishi.links results for OAEI
2011, in: 6th International Workshop on Ontology Matching, Bonn, Germany,
2011.

[40] Stanley Hillner, Axel-Cyrille Ngonga Ngomo, Parallelizing LIMES for large-
scale link discovery, in: 7th International Conference on Semantic Systems,
Graz, Austria, 2011.

[41] Houda Khrouf, Vuk Milicic, Raphaël Troncy, Mining events connections on
the social web: Real-time instance matching and data analysis in eventmedia,
J. Web Sem. 24 (2014) 3–10.

[42] Jennifer Sleeman, Online unsupervised coreference resolution for semi-
structured heterogeneous data, in: Doctoral Consortium, 11th International
Semantic Web Conference, Boston, USA, 2012.

[43] Olivier Curé, Blin Guillaume (Eds.), RDF Database Systems: Triples Storage and
SPARQL Query Processing, first ed., Morgan Kaufmann, Boston, MA, USA, 2015.

[44] Michael Stonebraker, Ugur Çetintemel, Stanley B. Zdonik, The 8 requirements
of real-time stream processing, SIGMOD Rec. 34 (4) (2005) 42–47.

[45] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
Peter F. Patel-Schneider (Eds.), The Description Logic Handbook: Theory,
Implementation, and Applications, Cambridge University Press, New York, NY,
USA, 2003.

[46] Emanuele Della Valle, Stefan Schlobach, Markus Krötzsch, Alessandro Bozzon,
Stefano Ceri, Ian Horrocks, Order matters! harnessing a world of orderings for
reasoning over massive data, Semant. Web 4 (2) (2013) 219–231.

[47] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle,
Michael Grossniklaus, Incremental reasoning on streams and rich background
knowledge, in: The Semantic Web: Research and Applications, 7th Extended
SemanticWeb Conference, ESWC 2010, Heraklion, Crete, Greece,May 30–June
3, 2010, Proceedings, Part I, 2010, pp. 1–15.

[48] Darko Anicic, Paul Fodor, Sebastian Rudolph, Nenad Stojanovic, EP-SPARQL: a
unified language for event processing and stream reasoning, in: Proceedings
of the 20th International Conference on World Wide Web, WWW 2011,
Hyderabad, India, March 28–April 1, 2011, 2011, pp. 635–644.

[49] Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Frank van Harmelen, Henri E.
Bal, Owl reasoning with webpie: Calculating the closure of 100 billion triples,
in: ESWC (1), 2010, pp. 213–227.

[50] Aidan Hogan, Jeff Z. Pan, Axel Polleres, Stefan Decker, Saor: Template rule
optimisations for distributed reasoning over 1 billion linked data triples, in:
International Semantic Web Conference (1), 2010, pp. 337–353.

[51] Jeffrey Dean, Sanjay Ghemawat, Mapreduce: Simplified data processing on
large clusters, in: OSDI, 2004, pp. 137–150.

[52] Jesper Hoeksema, Spyros Kotoulas, High-performance distributed stream
reasoning using s4, in: Ordring Workshop at ISWC, 2011.

Marie-Aude Aufaure, who obtained a Ph.D. in Computer
Science from the University of Paris 6, joined CentraleSu-
pelec in 2003. She was head of the academic chair in Busi-
ness Intelligence funded by SAP from 2008 to 2014, and
member of the laboratory of Mathematics Applied to Sys-
tems. Before joining CentraleSupelec, she worked in in-
dustry and in academia, in particular at INRIA where she
was associated partner from 2001 to 2014. Her domains
of competencies cover digital technologies, Big Data, Busi-
ness Intelligence, Semantic Technologies, DataMining and
Machine Learning. She is reviewer formany scientific jour-

nals and conferences, and is regularly invited for keynote talks. She was involved in
many European and National collaborative projects as scientific manager, and has
supervised fifteen Ph.D. students.

Marie-Aude Aufaure is in charge of the big data professional training at
CentraleSupelec. She also acts as an independent expert for the European
Commission and is scientific advisor for innovative companies involved in digital
technologies.

Raja Chiky is currently Associate Professor at ISEP
where she is head of the RDI team (Research and
development in Information Technology) and responsible
for database and data mining courses. She holds a Ph.D.
in Computer Science from Telecom ParisTech obtained
after a Master degree in data mining and an engineering
degree in Computer Science. Before joining ISEP, she
taught statistics, databases and language programming
at the University of Paris Dauphine, University Paris 12
and Telecom ParisTech. She worked closely with EDF R&D
on research projects related to data stream mining. Her

research interests include statistics, data mining, data warehousing, data stream
management, recommender systems, and cloud computing.

Olivier Curé is an assistant professor in Computer Science
at the Université Paris-Est in France. He obtained his
Ph.D. in artificial intelligence at the Université de Paris V,
France. His research focuses on the relationships between
databases and knowledge bases, reasoning in the context
of the SemanticWeb, data quality and ontologymediation
and big data. He is part of the Models and Algorithms
research team at LIGM CNRS lab (Université Paris-Est
Marne la Vallée).

He has published 1 book, 4 book chapters, 8 journal
papers and more than 50 papers in international, peer-

reviewed conferences on databases, semantic web and ontologies.

Houda Khrouf is a post-doctoral researcher in Computer
Science at ATOS SE. She received her M.Sc. from ESIEE En-
gineering in 2008 and her Ph.D. from Telecom ParisTeh in
2014. Her main research topics are knowledge represen-
tation, big data, recommender systems and data mining.
She is currently involved in a French National project fo-
cusing on semantic streamprocessing and distributed sys-
tems. She was part of the teamwinning the SemanticWeb
Challenge at ISWC 2012 and the team winning the IESD
Challenge at EKAW 2012.

Gabriel Kepeklian as research engineer at Thomson
(1981–1988) in the field of computer languages and formal
grammars – INSA 1981 (National Institute of Applied
Sciences of Lyon) – has developed compilers and created
supercomputer control languages. He is now R&DDirector
at Atos Integration France and develops projects focused
on the technologies of web of data and linked data.
Gabriel Kepeklian is currently Chairman of the DataLift
association, which promote the development of web data,
research, innovation and any activity to promote its
uses as its technology aims. Its publications, courses and

conferences have the same aims.

http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref41
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref43
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref44
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref45
http://refhub.elsevier.com/S0167-739X(15)00363-5/sbref46

	From Business Intelligence to semantic data stream management
	Introduction
	From BI to semantic data stream management
	Semantic data streaming
	Data summarization
	Summarizing semantic data streams

	Data matching in an RDF stream context
	Reasoning in an RDF stream context
	Conclusion
	References


